The elasticity and failure of fluid-filled cellular solids: theory and experiment.
نویسندگان
چکیده
We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.
منابع مشابه
Nonlinear Vibration Analysis of the Fluid-Filled Single Walled Carbon Nanotube with the Shell Model Based on the Nonlocal Elacticity Theory
Nonlinear vibration of a fluid-filled single walled carbon nanotube (SWCNT) with simply supported ends is investigated in this paper based on Von-Karman’s geometric nonlinearity and the simplified Donnell’s shell theory. The effects of the small scales are considered by using the nonlocal theory and the Galerkin's procedure is used to discretize partial differential equations of the governing i...
متن کاملCoupled Vibration of Partially Fluid-Filled Laminated Composite Cylindrical Shells
In this study, the free vibration of partially fluid-filled laminated composite circular cylindrical shell with arbitrary boundary conditions has been investigated by using Rayleigh-Ritz method. The analysis has been carried out with strain-displacement relations based on Love’s thin shell theory and the contained fluid is assumed irrotational, incompressible and inviscid. After determining the...
متن کاملNonlocal Vibration of Y-SWCNT Conveying Fluid Considering a General Nonlocal Elastic Medium
In this paper, a nonlocal foundation model is proposed to analyze the vibration and instability of a Y-shaped single-walled carbon nanotube (Y-SWCNT) conveying fluid. In order to achieve more accurate results, fourth order beam theory is utilized to obtain strain-displacement relations. For the first time, a nonlocal model is presented based on nonlocal elasticity and the effects of nonlocal fo...
متن کاملSurface Effect on Vibration of Y-SWCNTs Embedded on Pasternak Foundation Conveying Viscose Fluid
Surface and small scale effects on free transverse vibration of a single-walled carbon nanotube (SWCNT) fitted with Y-junction at downstream end conveying viscose fluid is investigated in this article based on Euler-Bernoulli beam (EBB) model. Nonlocal elasticity theory is employed to consider small scale effects due to its simplicity and efficiency. The energy method and Hamilton’s principle a...
متن کاملMicrobuckling instability in elastomeric cellular solids
Compressive properties of elastic cellular solids are studied via experiments upon foam and upon single-cell models. Open-cell foam exhibits a monotonic stress-strain relation with a plateau region; deformation is localized in transverse bands. Single-cell models exhibit a force-deformation relation which is not monotonic. In view of recent concepts of the continuum theory of elasticity, the ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 4 شماره
صفحات -
تاریخ انتشار 2000